A molecular simulation protocol to avoid sampling redundancy and discover new states.
نویسندگان
چکیده
BACKGROUND For biomacromolecules or their assemblies, experimental knowledge is often restricted to specific states. Ambiguity pervades simulations of these complex systems because there is no prior knowledge of relevant phase space domains, and sampling recurrence is difficult to achieve. In molecular dynamics methods, ruggedness of the free energy surface exacerbates this problem by slowing down the unbiased exploration of phase space. Sampling is inefficient if dwell times in metastable states are large. METHODS We suggest a heuristic algorithm to terminate and reseed trajectories run in multiple copies in parallel. It uses a recent method to order snapshots, which provides notions of "interesting" and "unique" for individual simulations. We define criteria to guide the reseeding of runs from more "interesting" points if they sample overlapping regions of phase space. RESULTS Using a pedagogical example and an α-helical peptide, the approach is demonstrated to amplify the rate of exploration of phase space and to discover metastable states not found by conventional sampling schemes. Evidence is provided that accurate kinetics and pathways can be extracted from the simulations. CONCLUSIONS The method, termed PIGS for Progress Index Guided Sampling, proceeds in unsupervised fashion, is scalable, and benefits synergistically from larger numbers of replicas. Results confirm that the underlying ideas are appropriate and sufficient to enhance sampling. GENERAL SIGNIFICANCE In molecular simulations, errors caused by not exploring relevant domains in phase space are always unquantifiable and can be arbitrarily large. Our protocol adds to the toolkit available to researchers in reducing these types of errors. This article is part of a Special Issue entitled "Recent developments of molecular dynamics".
منابع مشابه
Redundancy Allocation Problem of a System with Three-state Components: A Genetic Algorithm (RESEARCH NOTE)
The redundancy allocation is one of the most important and useful problems in system optimization, especially in electrical and mechanical systems. The object of this problem is to maximize system reliability or availability within a minimum operation cost. Many works have been proposed in this area so far to draw the problem near to real-world situations. While in classic models the system com...
متن کاملSolving Redundancy Allocation Problem with Repairable Components Using Genetic Algorithm and Simulation Method
Reliability optimization problem has a wide application in engineering area. One of the most important problems in reliability is redundancy allocation problem (RAP). In this research, we worked on a RAP with repairable components and k-out-of-n sub-systems structure. The objective function was to maximize system reliability under cost and weight constraints. The aim was determining optimal com...
متن کاملA New Framework for Secure Routing in VANET
Vehicular Ad-Hoc Networks can enhance road safety and enable drivers to avoid different threats. Safety applications, mobile commerce, and other information services are among different available services that are affected by dynamic topology, vehicle’s speed and node misbehaving. Dynamic topology makes the route unstable and unreliable. So, improving the throughput and performance of VANET thr...
متن کاملOutput Consensus Control of Nonlinear Non-minimum Phase Multi-agent Systems Using Output Redefinition Method
This paper concerns the problem of output consensus in nonlinear non-minimum phase systems. The main contribution of the paper is to guarantee achieving consensus in the presence of unstable zero dynamics. To achieve this goal, an output redefinition method is proposed. The new outputs of agents are functions of original outputs and internal states and defined such that the dynamics of agents a...
متن کاملA New Nonlinear Multi-objective Redundancy Allocation Model with the Choice of Redundancy Strategy Solved by the Compromise Programming Approach
One of the primary concerns in any system design problem is to prepare a highly reliable system with minimum cost. One way to increase the reliability of systems is to use redundancy in different forms such as active or standby. In this paper, a new nonlinear multi- objective integer programming model with the choice of redundancy strategy and component type is developed where standby strategy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1850 5 شماره
صفحات -
تاریخ انتشار 2015